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An expression for the non-adiabatic transition probability is derived from the view-point 
of the non-stationary character of the adiabatic approximation. A numerical calculation has 
been made for the free hTO molecule. The non-adiabatic transition probability for the transi- 
tion (B~  v = 0) -~ (a4~ v = 9) is estimated to be 10 -6 see -1 by using the wave functions pro- 
posed by MOS~R et al. 

Fiir die nicht adiabatische ]~Jbergangswahrscheinlichkeit wurde aus dem nicht-stationtiren 
Charakter der adiabatischen Naherung ein Ausdruek hergeleiteb, der fiir den Fall des NO- 
Molekfils numerisch ausgewertet wurde. Dabei ergab sich unter Verwendung der Wellenfunk- 
tionen yon MOSER u. Mitarb. eine Wahrseheinlichkeit f/Jr den TJbergang (B2z v = 0) 
(a4z v = 9) yon der Gr6Benordnung yon 10 -e see-L 

Une expression pour la probabilit5 de la transition non adiabatique est obtenue du point 
de vue du caract~re non stationnaire de l'approximation adiabatique. Un ealcul numSrique a 
6t6 effectu6 pour la mol6cule NO isol6e. La probabilit6 de transition non adiabatique pour la 
transition (B2z v = 0) --> ( a 4 z  v = 9) est 6valu6e s :i0 -e see -1 en utilisant les fonetions d'onde 
propos6es par M o s ~  et al. 

1. Introduction 
Recent ly ,  m a n y  inves t iga t ions  on the  app rox ima t ion  of  t he  B o r n - 0 p p e n -  

he imer  sepa ra t ion  have  been carr ied out  [1, 2, 3]. FISK and  K m T ~ A ~  [4], and  
J]~psE~ a n d  HI~SCH~ELD~g [5] respec t ive ly  eva lua t ed  the  energy correct ions to  
t he  B o r n - 0 p p e n h e i m e r  app rox ima t ion  for the  I tz  and  H + molecules.  C m v  [6] 
discussed the  ro ta t ion-e lec t ronic  in te rac t ions  of  d ia tomie  molecules f rom the  
nonad iaba t i e  v iewpoin t  of  t he  B o r n - 0 p p e n h e i m e r  app rox ima t ion .  W c  and  
B H A ~  [7], and  D ~ L G ~ O  and  M c C ~ R o L L  [8] respec t ive ly  s tud ied  the  in terac-  
t ions  of  hyd rogen  and  he l ium a toms  in the  g round  and  exc i ted  s ta tes ,  and  found  
t h a t  the  d iagonal  t e rms  of  the  coupling be tween electronic and  nuclear  mot ion  
are  no t  negligible a t  large separat ions .  I n  the  presen t  inves t iga t ion ,  we shall  
discuss the  n o n - s t a t i o n a r y  charac te r  of  the  ad iaba t i c  a p p r o x i m a t i o n  [9]. I t  will be 
shown Shut there  is a lways  a definite t r ans i t ion  p r o b a b i h t y  for t he  sys tem to 
osci l late f rom one electronic s ta te  to  ano ther  accompanied  b y  a change in ~he 
q u a n t u m  s ta tes  of  nuclear  mot ion  to  make  energy conserved. I n  t he  nex t  sect ion 
we shall  e s t ima te  t he  non-ad iaba t i c  t r ans i t ion  p r o b a b i l i t y  for t he  t r ans i t ion  
B2~r ~ a4~ of  the  free N 0  molecule. 

Consider  a sys tem of  N electrons wi th  coordinates  ~f, i = i ,  2 . .  N,  and  L nuclei  
wi th  coordinates  ~'~, a = i ,  2 . . L .  The q u a n t m n  mechan ica l  mo t ion  of  the  sys tem 
is t hen  given b y  the  SchrSdinger  equa t ion  
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where the electron mass is denoted by m, and the nuclear masses by M~. I t  is 
possible to expand the wave function of the system of electrons and nuclei in the 
following form: 

~ =  n~: Cup(t)Znv(R)~n(r, R )exp  ( i W~v t) (2) 

where Why and Znv are the solution of the Schr6dinger-type equation for the 
nuclear motion 

2, ~ P= + E~)(R) + = 

and 
s/~ ~ ( r ,  R) = E(2(R) ~(r, R) (4) 

with B(n~(R) defined by 
B(~(R) = �89 < ~  t ~  I~> .  (5) 

Substituting E q. (2) in E q. (l), multiplying both sides of the resulting e q uation by 
~n(r, R) Znv(R), and integrating over the electronic and the nuclear coordinates, 
we obtain the following set of coupled equations for the coefficients Cup(t) : 

i~ c~v(t) = ~+'2' <Znv I O~n,(R) l Zn'v'> exp [ir -~W+o,)e]] c~,r (6) 

where Cnn'(R) is 

~=~, = @~ [P~ I~'> (7) Cnn'(R) = -1 ~ w=n~' "P= + and 

The coordinate system usually used for the electrons in the integrals ~(~) and 
B(:) is fixed to the nuclear skeleton, hence some of the nuclear coordinates will 
not appear as parameters in the electronic wave function. I t  is usually easier to 
transform the derivatives to a coordinate system moving with the nuclei than to 
carry out the differentiation on the complicated function obtained when the elec- 
tronic wave function is expressed in fixed coordinates. The non-diagonal matrix 

elements ~(n~,, and B(2 d, were calculated by g v x s ~  and I-IIRSC~F]~LD~ [6] for 
I-I + between the two electronic states isa and 2s~. I f  (finn + # O, there is a definite 
transition probability for the system to make non-adiabatic transitions from one 
electronic state to another. This non-adiabatic transition from one electronic state 
to another is accompanied by transitions in the quantum states of the nuclear 
motion. 

The experimental evidence shows that  the influence of the coupling terms 
(finu'(-R) is very small. Thus, we may use time-dependent perturbation theory to 
determine the transition probability which is 

2~ 
P(n'v' -+ n v) = - - ~ - l < Z n v  I (fi +(R)I Z+v,> I (s) 

where ~(Wnv) represent the density of states. We shall apply Eq. (8) to calculate 
the non-adiabatic transition probability for the transition B2z -+ aaT~ of the NO 
molecule. 

2. Application to Nitric Oxide 

Instead of directly performing the derivation of P(n'v' -+ nv) in the fixed co- 
ordinate system as already outlined, it is possible to separate off the motion of the 
center of mass from the SchrSdinger equation before performing the derivation. 
J ~ P s ~  and I - I m s c ~ L D ~  [10] pointed out that  the two approaches give quite 
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different Born-Oppenheimer separations, with somewhat different accuracy and 
somewhat different coupling terms between the electronic and nuclear motions. In  
the following treatment of diatomic molecules, we shall ignore the distinction 
between the center of gravity of the nuclei, and the center of gravity of the molecule 
and use the rotating coordinate system associated with the nuclei for the motion 
of the electrons. In  this case, the coupling matrix elements Cnn'(~) takes the 
following form : 

_9,iM  

t [ 0 ;  ^ 0 
+ R ~ sin ~ 0 L ~ ,  -- 2 sin OM, -~ -  - 2i cos 03I~ O~ (9) 

- -  i sin ~-~ + ~-0 - -  ~P~') 

where ~ represents the coordinate whose axis is directed along the line joining the 

nuclei, and (2~r M,, J~r denote the operators of the components of the total 
angular momentum of the electrons. Next we want to calculate the coupling 
matrix element between the two electronic states B*z and aaz of the ~O molecule. 
The qualitative molecular orbital description of nitric oxide was originally given 
by M v ~ L ~  [11]. Recently, a complete self-consistent LCAO treatment of NO 
has been carried out by l~[os~ et al. [12]. We shall use their wave functions to 
estimate Ca% B~,(R). For convenience, their molecule orbitals and wave functions 
for nitric oxide are tabulated in Tab. I and 2 respectively. 

Table t. Molecular Orbitals o/ Nitric Oxide 

r = ( t s ) o  r  = ( i s ) .  
r = 0.3700 (2s)~ + 0.6561 (2s)o + 0.t927 (2pa)n + 0.5994 (2p~)o 
r = 0.8084 (2s)~ -- 0.7766 (2s)0 + 0.0465 (2p~)~ + 0.2679 (2pa)o 
r ~ 0.4847 (2s)~ + 0.2505 (2s)o - 0.6387 (2T~)n - 0.5392 (2pa)o 
tss = 0.7036 (2s)~ - 0.7300 (2s)o + 5.0618 (2pa)~ - 1.0313 (2ps)o 
r = 0.5050 (2p~)~ + 0.7649 (2ps)o 
r = 0.8887 (2p=)~ - 0.6780 (2ps)o 

I f  the rotation-electronic interactions are neglected, then the rotational angular 
momentum is conserved in the system. With this and the orthogonality of the 
electronic wave functions, we can see from Eq. (9) that  the main contribution to 

the calculation of Cnn'(R) c o m e s  from (~n ~0n') and (~n - ~  

Furthermore, since/~2z ~ a ~  is spin-forbidden, to calculate C a % ~ ( R ) ,  we have 
to calculate the matrix elements of spin-orbit coupling, vibronic coupling and 

1" 
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Table 2. Wave Functions o[ Nitric Oxide~ 

~(x~= 1{) = I(I~+)+0~-)+(I~+)_(I~-)_(2~+)+1 

,p(a~ i-~) = 1 (1~+)+(i~-)+(Iz+)-(2~+)+(2u+) - ] 

v,(a'~ q )  = ~ (I 0~+)+0~-)+(~-)-(~+)+(2~)- I + 
[ (1~)+(1=-)+(~+)-(2=+)+(2~-)-[) 

~p~(B~ 1�89 = ] (I~+)+(I~+)_(I~-)_(2z+)+(2~-)+ ] 

'P~(B~'P t { )  = i 2  (] ('l.:rr+)+('11z~-)+(lz~+)_(2zt+)+(2z~-)_ [ - 

~ ( B ~  1�89 = t ~-~ I ( 1 ~ + ) + ( 1 ~ - ) + ( 1 ~ - ) - ( 2 ~ + ) + ( 2 ~ + )  - I - 2 

+ I (l~+)+(t~t-)+(lg+)_(2~+)+(2~-)_ ]) 

For simplicity, the configuration (la) ~ (2a) ~ (3~) ~ (4a) ~ (Sa) ~ has been omitted. 

(~)+({=-)+(~+)_(2Z-)+(2~)_ I + 

(l=+)+(lz-)+(l=-)_(2m)+(2~)_ I) 

(i~+)+(I~-)+(I~+)-(2~-)+(2~+) - I + 

spin-vibronic coupling. These mat r ix  elements calculated by  the  conventional  
procedures [13, 14, 15, 16] using the  wave functions of  Tab. 2 are, at  equilibrium 
positions. 

@~(B~ 1�89 ~ ~(~,~ 1�89 = - s.76 • 10-~ 

, (e~) 

' e(T.) 
@~(B27t t { )  l Hso ] ~o(aa~ l{)> = 0.591 • l0  -4 . 

I n  Eq.  (14), H~0 represents the  spin-orbit  coupling: 

, e y / +  (r% • 
t 8~.(V~ v ~ ) + ~  H~o~ 2~,~ Z +  ~ x ~: ~ - -  ( l i )  i r{J8 

where 7~ are electron spin operators. The detailed calculation of  the mat r ix  
elements in Eq. (10) is discusses elsewhere [17]. 

I n  order to  evaluate the  integrals involving the  vibrational wave functions be- 
tween two electronic states, we assume t h a t  the  potential  curves of  the two 
electronic states are in the  form of  the  Morse potent ial  [18] 

Un(R) = Dn[ l  -- e--a-(R-R,~)] 2 �9 (12) 

Then  the  vibrat ional  wave functions Z(n~ b) = I / R  Cnv t ake  the  renewing form 
[18, 19]: 

K ,  - 2v - 1 
[ c~,~(K, - 2v - t) IV~ Z /'(K~ - v) ZV_ ~ 

r  ~ . ~ ( ~ _  ~)-  - .,j ~- . ~ z .  ~ ~=o:~ (_tp+v(~) r ( ~ -  ; - k ) - "  03) 

where F(x) is the gamma  function, Zn -~ Kne -~*(R-a'~) -~ ~ne -~*R and  K n  and Dn 
are related to the constants  in the expression for the vibrat ional  energy 

W(vib)_ (Dn( v _]_ { )  _ (09nXn) (V -t- {)2 (14) 
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Thus, for example, the overlap integral of the vibrational wave functions between 
two electronic states is given by 

K.  - I K., - 1 

~,~, ~ -  < ~  r  I -~  r  = ( -  2r ~ 4. ,  e 

~' v, ~ I'(K,~ - v) I~(K . ,  - v') J ( k  k ' )  (16) 
k=0 k /=0  

where 

and 
- N n v :  [ v! F(Kn - v) (t7) 

o o  

J (k ,  k ')  -- ~ d R [ -  l(2ne-~'~R + 2n,e-~'R)] x 
O o - -  

• exp [ - -  (�89 g n  -- k -- �89 a n R  -- (~ g n "  - k '  - �89 an 'R]  (18) 

since an # an' ,  the integral J(k, ]d) in general cannot be evaluated exactly, and 
if  it is desired to obtain a general analytical formula for an overlap integral, it is 
necessary to resort to a valid approximation. The approximation method proposed 
by  l~aAs~ and J ~ m x N  [20] is to replace Un(R)  and Un,(R)  by the two new 
potentials U'n(R ) and U'n,(R ). The new potentials have their a-values equal to 
some mean value of the original an and an' .  I t  is easiest to take the arithmetic 
mean ~u -~ (an + an') /2 though it is sometimes convenient to choose another a tha t  
will make final computations easier and yet not affect the result. Compensating 
adjustments  are made in the constants of the two states tha t  depend on the s-value 
for the state. Thus, normalization and closure properties are maintained. The 
molecular constants adjusted to correspond to the new a, and indicated by  primes, 
are 

K n ----- K ~  , .Kn" = K n '  , "~n ~ K n  e~R"n, ~'n = Kn" ec~R'~' �9 (19) 

With these adjustments, the integral J (k ,  k ')  can be carried out easily and is 
given by  

J ( k  k ' ) - ~  l - -(~ ~ I~(K - l --  k - k ' )  (20) 

where g ---- �89 + K~,) and ~ = ~ ( ~  + ~n')" Other vibrational integrals like 
er 

< t / R  t n v  I R'~ tnv>, ( t / R  t n v  [ I / R ~  > etc., can be evaluated similarly. By  

using the molecular constants [21] co ~- 1038 cm -1, c o x :  7.60] cm -1, Re ~- 1.385 
A for the B2z state [22], and co ---- 1019 cm -1, cox ~ i2.8 cm -1, Re -~ 1.4 A for the 
aa~ state. We obtain, for example, 

(Z(0Ub)(B2z) I z~ib)(a4~)) -~ -- 0.674 • 10 -g (2t) 

These values agree to the order of magnitude with those obtained by  the harmonic 
oscillator approximation [24]. I t  should be noticed tha t  the vibratior~al integrals 
of diatomic molecules between two electronic states depend very greatly on the 
modifications in eqtfilibrium distances and vibrational frequencies of the two 



6 S.H. Ln~: 

electronic states. The larger the modifications in equilibrium distances and 
vibrational frequencies of the two electronic states, the larger will be the vibra- 
tional integrals. 

To calculate the non-adiabatic transition probabili ty for the transition 
B2~r -~ a4~, we further assume tha t  the intervals of the rotational energy are so 
small in comparison with those of the vibrational energy tha t  the rotational energy 
m a y  be approximately regarded as forming a continum spectrum, and also tha t  
the electronic-rotation couplings are negligible. In  this case, we have ~(Wnv) 
2~_Re ~ 

~z " [24]. Actually this is also equivalent to assume tha t  the non.adiabatic 

transitions originate from a Boltzmann distribution of rotational levels at  rather  
high temperatures so tha t  the summation over rotational states can be replaced 
by  an in te~at ion.  

Substituting the matr ix  elements of spin-orbR coupling, vibronie coupling, 
spin-vibronic coupling, and the vibrational integrals listed respectively in Eqs. (t0) 
and (21), into Eq. (8), and using the Franck-Condon approximation, we obtain the 
non-adiabatic transition probabil i ty for the transition from the state B ~ ( v ' - -  - 0) 
to the state a4~(v----- 9) as 

2~ 

= 2_~_~ h 2 ~ 4 

= ~ x ~0 -s  sec -1 . (22) 

This is indeed a small value. However, this value cannot be taken too seriously in 
view of the crudity of the wave functions used, and the uncertainty of the equi- 
librium distance of the a4z state. These dependences m a y  easily change the order 
of magnitude estimated above. Eq. (22) gives us the spontaneous rate for an 
isolated NO molecule to make radiationless transition from the initial state 
(B~, v'---- O) to the state (a 'z ,  v = 9). 

Although the non-adiabatic transition B2z -+ X2z is spin-allowed, because of 
the large electronic energy gap involved in the transition, it will not be more 
favorable than  the non-adiabatic transition B ~  -+ a4~ we have discussed. The 
calculation of the non-adiabatic transition probabili ty P(B2~r -+ X~z) will not be 
a~tempted here. Because, in this case, even the Fraser and Jarmain ' s  method for 
estimating the vibrational integrals between two electronic states becomes imprac- 
tical due to the strong cancellation property of the Laguerrc polynomials. Finally, 
i~ shoulcl be pointed out tha t  the non-adiabatic transition probabili ty calculated 
here is for a free molecule, and it can be greatly enhanced [3, 17], when the mole- 
cule is embeded in a crystalline solvent of another species. 

Acknowledgement. The author is indebted to Professor 1%. BERSO~ of Columbia Universiby 
for some helpful discussions. 
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